VSE Flow Meters

Flow computer series

VSE Flow Measurement has many kind of type flow meter such as :

VS Series

  • measuring
  • metering
  • hydraulics
  • monitoring
  • controlling + regulating
  • processing
  • automotive industry
  • plastics technology

EF Series

  • oils
  • grease
  • printing inks

VHM Series

  • inks, paints
  • chemicals
  • pharmaceuticals
  • 2K machines
  • petrochemicals

VTR Series

  • water similar fluids
  • water
  • oils
  • petrochemicals

VSE Oil Flow Meter

Flow measuring, ratio control and liquid dispensing

High precision measuring results for almost all pumpable media
Test stands, quantity, consumption, volume and flow measuring, metering, batching, ratio control, monitoring of mixing ratios, leakage, breakdown, limit value, real time monitoring, liquid dispensing 
Flow measuring equipment



Diverse application possibilities

  • measuring technology
  • metering technology
  • hydraulics
  • monitoring technology
  • control and regulating
  • process technology

Application specific process electronics

  • comprehensive programme
  • electronic evaluation equipment
  • individual solutions available

Materials

  • grey cast iron
  • stainless steel
  • aluminium
  • other materials on request

Ease of installation

  • compact design
  • robust
  • low maintenance
  • reduced weights
  • simple operation
Turbine flow meters are precise and reliable measuring equipment, designed for varied applications. VTR flow meters can be installed even under the harshest application conditions including oil,…Lainnya>>
The positive displacement gear flow sensors of the VHM Series are based on the meshing gear principle and were developed for high precision flow metering for a wide variety of liquids, especially…Lainnya>>
Based on the same meshing gear principle as the VSE Series VHM the VSE EF ecoflow sensor measures viscous media, however as in-line-device. The VSE EF ecoflow is an inexpensive alternative to the VS…Lainnya>>
RS flow meters measure the flow rate based on the screw pump principle. The newly developed rotor profiles ensure a low-resistance, high-precision measurement while gently transporting the…Lainnya>>
VS positive displacement flow meters are volume rate measuring sensors based on the meshing gear principle and are designed for use with liquids. Two precisely matched gear wheels are enclosed in a…Lainnya>>

Sibas Connector Model HE


Sibas Connector
Model : HE
No. contact : 32 Pins

INSERT 

6-pin connector (screw-type) male plug  
Model: HE-006-M Specifications: 500V, 16A. 

6-pin connector female plug (screw-type)

Model: HE-006-F
Specifications: 500V, 16A

6-pin connector (shrapnel-type) male plug

Model: HE-006-MS
Specifications: 500V, 16A

6-pin connector female plug (shrapnel-type)

Model: HE-006-FS

Specifications: 500V, 16A

6– pin connector male plug (cold type)


Model: HE-006-MC
Specifications: 500V, 16A

6-pin connector female plug (cold type)

Model: HE-006-FC

Specifications: 500V, 16A

6-pin connector male plug (two-terminal)

Model: HE-006-MSS

Specifications: 500V, 16A

6-pin connector female plug (two-terminal)

Model: HE-006-FSS

Specifications: 500V, 16A

HOOD

Low structural side out on the shell (single buckle)

Model: H6B-TS
Specifications: M25, M20, PG21, PG16

 High structural side out on the shell (single buckle)

Model: H6B-TSH
Specification: M32, M25, PG29, PG21

 The low structural Top out on the shell (single buckle)

Model: H6B-TG
Specifications: M25, M20, PG21, PG16

The high structural Top on the shell (single buckle)
Model: H6B-TGH
Specification: M32, M25, PG29, PG21
HOUSING

 Openings installed base (single buckle)
Model: H6B-AG
Specifications:


Perforated lid base
Model: H6B-AD
Specifications:
Surface mounting base
Model: H6B-SGR
Specifications: M25, M20, PG21, PG16

Surface Mount lid base
Model: H6B-SDR
Specifications: M25, M20, PG21, PG16

Cable took over the shell (ejection)
Model: H6B-TBF
Specifications: M25, M20, PG21, PG16

On shell protection cover
Model: H6B-KDT
Specification

Sibas Connector Model HE 24 pin


Sibas Connector
Model : HE
No. contact : 24 Pins

INSERT 

6-pin connector (screw-type) male plug  
Model: HE-006-M Specifications: 500V, 16A. 

6-pin connector female plug (screw-type)

Model: HE-006-F
Specifications: 500V, 16A

6-pin connector (shrapnel-type) male plug

Model: HE-006-MS
Specifications: 500V, 16A

6-pin connector female plug (shrapnel-type)

Model: HE-006-FS

Specifications: 500V, 16A

6– pin connector male plug (cold type)


Model: HE-006-MC
Specifications: 500V, 16A

6-pin connector female plug (cold type)

Model: HE-006-FC

Specifications: 500V, 16A

6-pin connector male plug (two-terminal)

Model: HE-006-MSS

Specifications: 500V, 16A

6-pin connector female plug (two-terminal)

Model: HE-006-FSS

Specifications: 500V, 16A

HOOD

Low structural side out on the shell (single buckle)

Model: H6B-TS
Specifications: M25, M20, PG21, PG16

 High structural side out on the shell (single buckle)

Model: H6B-TSH
Specification: M32, M25, PG29, PG21

 The low structural Top out on the shell (single buckle)

Model: H6B-TG
Specifications: M25, M20, PG21, PG16

The high structural Top on the shell (single buckle)
Model: H6B-TGH
Specification: M32, M25, PG29, PG21
HOUSING

 Openings installed base (single buckle)
Model: H6B-AG
Specifications:


Perforated lid base
Model: H6B-AD
Specifications:
Surface mounting base
Model: H6B-SGR
Specifications: M25, M20, PG21, PG16

Surface Mount lid base
Model: H6B-SDR
Specifications: M25, M20, PG21, PG16

Cable took over the shell (ejection)
Model: H6B-TBF
Specifications: M25, M20, PG21, PG16

On shell protection cover
Model: H6B-KDT
Specification

Sibas Connector Model HE 48 Pin

Sibas Connector
Model : HE
No. contact : 48 Pins

INSERT 

6-pin connector (screw-type) male plug  
Model: HE-006-M Specifications:
500V, 16A. 

6-pin connector female plug (screw-type)

Model: HE-006-F
Specifications: 500V, 16A

6-pin connector (shrapnel-type) male plug

Model: HE-006-MS
Specifications: 500V, 16A

6-pin connector female plug (shrapnel-type)

Model: HE-006-FS

Specifications: 500V, 16A

6– pin connector male plug (cold type)


Model: HE-006-MC
Specifications: 500V, 16A

6-pin connector female plug (cold type)

Model: HE-006-FC

Specifications: 500V, 16A

6-pin connector male plug (two-terminal)

Model: HE-006-MSS

Specifications: 500V, 16A

6-pin connector female plug (two-terminal)

Model: HE-006-FSS

Specifications: 500V, 16A

HOOD

Low structural side out on the shell (single buckle)

Model: H6B-TS
Specifications: M25, M20, PG21, PG16

 High structural side out on the shell (single buckle)

Model: H6B-TSH
Specification: M32, M25, PG29, PG21

 The low structural Top out on the shell (single buckle)

Model: H6B-TG
Specifications: M25, M20, PG21, PG16

The high structural Top on the shell (single buckle)
Model: H6B-TGH
Specification: M32, M25, PG29, PG21
HOUSING

 Openings installed base (single buckle)
Model: H6B-AG
Specifications:


Perforated lid base
Model: H6B-AD
Specifications:
Surface mounting base
Model: H6B-SGR
Specifications: M25, M20, PG21, PG16

Surface Mount lid base
Model: H6B-SDR
Specifications: M25, M20, PG21, PG16

Cable took over the shell (ejection)
Model: H6B-TBF
Specifications: M25, M20, PG21, PG16

On shell protection cover
Model: H6B-KDT
Specification

PVC Flow Meter


Turbine Flow Meter
PVC Flow Meter
Water Meter

This unique system of 2″ to 8″ turbine flow meters uses just one moving part, a precision helical rotor. Rotation of the rotor is electronically detected and processed. The high-quality jewel bearings and polished zirconia ceramic shafts minimize friction while providing long wear life in non-lubricating fluids. The entire rotor assembly can be easily removed for field service without removing the flow meter from the pipe.

WTP bodies are fabricated from Schedule 80 PVC fittings, WTC bodies from carbon steel tubing, and WTS bodies (available as special order) from stainless steel tubing. The turbine insert on WTC and WTS meters is machined from a stainless steel casting. The WTP turbine insert is machined from a solid piece of PVC (polypro in 2” size). Turbine rotors on all models are Kynar (PVDF).

WT flow meters can be ordered with various output options. The basic model (100) comes with pulse output only. An electronic display (Seametrics FT420) is mounted on the 101 model to display flow rate and total (resettable or non-resettable), and provide a programmable pulse or 4-20 mA output. Other electronics options include a blind 4-20 mA transmitter (AO55) on the 102 model and a battery-powered (FT415) rate/totalizer plus pulse output for applications that lack power (104 model). All of these controls/displays can be mounted on the meter or remotely mounted on a wall or panel up to 2,000 feet away. WT Series flow meters are compatible for use with most other remote-mount Seametrics displays and controls as well.

FEATURES

  • One moving part
  • Low friction jewel bearings
  • Field repairable without removal from the line
  • Choice of materials for chemical compatibility
  • Variety of displays and contr

APPLICATIONS

  • Water treatment
  • Wastewater treatment
  • Cooling water monitoring
  • Industrial fluid control

Flow Meter

Introduction to Flow Meters
What are Flow meters?
A flow meter is an instrument used to measure linear, nonlinear, mass or volumetric flow rate of a liquid or a gas.
Selecting a Flow Meter The basis of good flowmeter selection is a clear understanding of the requirements of the particular application. Therefore, time should be invested in fully evaluating the nature of the process fluid and of the overall installation. Here are some key questions which need to answered before selecting a flow meter:
What is the fluid being measured by the flowmeter or flowmeters (air,water,etc…)?
Do you require rate measurement and/or totalization from the flow meter?
If the liquid is not water, what viscosity is the liquid?
Is the fluid clean?
Do you require a local display on the flow meter or do you need an electronic signal output?
What is the minimum and maximum flow rate for the flow meter?
What is the minimum and maximum process pressure?
What is the minimum and maximum process temperature?
Is the fluid chemically compatible with the flowmeter wetted parts?
If this is a process application, what is the size of the pipe?
Flow Measurement Orientation
When choosing flowmeters, one should consider such intangible factors as familiarity of plant personnel, their experience with calibration and maintenance, spare parts availability, and mean time between failure history, etc., at the particular plant site. It is also recommended that the cost of the installation be computed only after taking these steps. One of the most common flow measurement mistakes is the reversal of this sequence: instead of selecting a sensor which will perform properly, an attempt is made to justify the use of a device because it is less expensive. Those “inexpensive” purchases can be the most costly installations.
The basis of good flow meter selection is a clear understanding of the requirements of the particular application. Therefore, time should be invested in fully evaluating the nature of the process fluid and of the overall installation.
The first step in flow sensor selection is to determine if the flowrate information should be continuous or totalized, and whether this information is needed locally or remotely. If remotely, should the transmission be analog, digital, or shared? And, if shared, what is the required (minimum) data-update frequency? Once these questions are answered, an evaluation of the properties and flow characteristics of the process fluid, and of the piping that will accommodate the flowmeter, should take place. In order to approach this task in a systematic manner, forms have been developed, requiring that the following types of data be filled in for each application: Click here to download the Flowmeter Evaluation Form
Fluid and flow characteristics: In this section of the table, the name of the fluid is given and its pressure, temperature, allowable pressure drop, density (or specific gravity), conductivity, viscosity (Newtonian or not?) and vapor pressure at maximum operating temperature are listed, together with an indication of how these properties might vary or interact. In addition, all safety or toxicity information should be provided, together with detailed data on the fluid’s composition, presence of bubbles, solids (abrasive or soft, size of particles, fibers), tendency to coat, and light transmission qualities (opaque, translucent or transparent?).
Expected minimum and maximum pressure and temperature values should be given in addition to the normal operating values when selecting flowmeters. Whether flow can reverse, whether it does not always fill the pipe, whether slug flow can develop (air-solids-liquid), whether aeration or pulsation is likely, whether sudden temperature changes can occur, or whether special precautions are needed during cleaning and maintenance, these facts, too, should be stated.
Concerning the piping and the area where the flowmeters are to be located, consider:
For the piping, its direction (avoid downward flow in liquid applications), size, material, schedule, flange-pressure rating, accessibility, up or downstream turns, valves, regulators, and available straight-pipe run lengths.
The specifying engineer must know if vibration or magnetic fields are present or possible in the area, if electric or pneumatic power is available, if the area is classified for explosion hazards, or if there are other special requirements such as compliance with sanitary or clean-in-place (CIP) regulations.
The next step is to determine the required meter range by identifying minimum and maximum flows (mass or volumetric) that will be measured. After that, the required flow measurement accuracy is determined. Typically accuracy is specified in percentage of actual reading (AR), in percentage of calibrated span (CS), or in percentage of full scale (FS) units. The accuracy requirements should be separately stated at minimum, normal, and maximum flow rates. Unless you know these requirements, your flowmeter’s performance may not be acceptable over its full range.
In applications where products are sold or purchased on the basis of a meter reading, absolute accuracy is critical. In other applications, repeatability may be more important than absolute accuracy. Therefore, it is advisable to establish separately the accuracy and repeatability requirements of each application and to state both in the specifications.
When a flowmeter’s accuracy is stated in % CS or % FS units, its absolute error will rise as the measured flow rate drops. If meter error is stated in % AR, the error in absolute terms stays the same at high or low flows. Because full scale (FS) is always a larger quantity than the calibrated span (CS), a sensor with a % FS performance will always have a larger error than one with the same % CS specification. Therefore, in order to compare all bids fairly, it is advisable to convert all quoted error statements into the same % AR units.
In well-prepared flow meter specifications, all accuracy statements are converted into uniform % AR units and these % AR requirements are specified separately for minimum, normal, and maximum flows. All flowmeters specifications and bids should clearly state both the accuracy and the repeatability of the meter at minimum, normal, and maximum flows.
If acceptable metering performance can be obtained from two different flow meter categories and one has no moving parts, select the one without moving parts. Moving parts are a potential source of problems, not only for the obvious reasons of wear, lubrication, and sensitivity to coating, but also because moving parts require clearance spaces that sometimes introduce “slippage” into the flow being measured. Even with well maintained and calibrated meters, this unmeasured flow varies with changes in fluid viscosity and temperature. Changes in temperature also change the internal dimensions of the meter and require compensation.
Furthermore, if one can obtain the same performance from both a full flowmeter and a point sensor, it is generally advisable to use the flowmeter. Because point sensors do not look at the full flow, they read accurately only if they are inserted to a depth where the flow velocity is the average of the velocity profile across the pipe. Even if this point is carefully determined at the time of calibration, it is not likely to remain unaltered, since velocity profiles change with flow rate, viscosity, temperature, and other factors.
Before specifying a flow meter, it is also advisable to determine whether the flow information will be more useful if presented in mass or volumetric units. When measuring the flow of compressible materials, volumetric flow is not very meaningful unless density (and sometimes also viscosity) is constant. When the velocity (volumetric flow) of incompressible liquids is measured, the presence of suspended bubbles will cause error; therefore, air and gas must be removed before the fluid reaches the meter. In other velocity sensors, pipe liners can cause problems (ultrasonic), or the meter may stop functioning if the Reynolds number is too low (in vortex shedding meters, RD > 20,000 is required).
In view of these considerations, mass flowmeters, which are insensitive to density, pressure and viscosity variations and are not affected by changes in the Reynolds number, should be kept in mind. Also underutilized in the chemical industry are the various flumes that can measure flow in partially full pipes and can pass large floating or settleable solids.

Flow Meter Turbin

Turbine Flow Meters
Flow Meter Turbin
Liquid Flow Meter

Flow Meter Turbine (turbin aksial)
diciptakan oleh Reinhard Woltman dan merupakan flow meter yang akurat dan dapat
diandalkan untuk liquid dan gas. Flowmeters Turbin menggunakan energi mekanik
dari cairan yang mengalir guna memutar sebuah “pinwheel” (rotor).
Blades pada rotor dibuat miring dengan sudut tertentu layaknya baling-baling,  untuk mengubah energi dari aliran fluid menjadi
energi rotasi. Poros rotor berputar pada bushing/bearing dimana ketika cairan
bergerak lebih cepat, rotor berputar secara proporsional lebih cepat.

Rotasi poros dapat dirasakan secara
mekanis atau dengan mendeteksi gerakan blade. Gerakan blade terdeteksi secara magnetis,
dengan masing-masing blade atau bagian tertanam dari logam akan menghasilkan
pulsa. Ketika liquid bergerak lebih cepat pada flow meter turbine, maka akan lebih banyak menghasilkan
pulsa yang akan sebanding dengan kecepatan aliran fluida. Sensor Pick-up pada flow meter turbin akan memproses
sinyal pulsa untuk menentukan aliran fluida. Pemancar dan sistem gerakan yang tersedia untuk menangkap aliran di kedua arah arus maju dan mundur.

Sensor pick-up menghasilkan pulsa
secepat berputar nya impeller, ini memberikan reaksi waktu yang sangat cepat sehingga membuat jenis flow meter ini  sangat cocok untuk aplikasi batching. Pulsa yang
dihasilkan oleh sensor pick-up merupakan pulsa per satuan volume, juga disebut
sebagai faktor-k.

Turbine Flow meters  dapat digunakan untuk mengukur kecepatan
aliran dari liquid, gas dan uap dalam pipa, seperti hidrokarbon, bahan kimia,
air, cairan kriogenik, udara, dan gas industri. 
Yang perlu diperhatikan dalam menentukan
turbine flow meter hendaknya berhati-hati pada cairan yang kotor ( mengandung
sampah, pasir dan solid lainnya) karena kotoran akan bisa menghambat akurasi
dan bahkan akan gagal karena rotor tidak bisa berputar akibat tersangkut
kotoran. Begitu juga untuk cairan yang non-pelumas, karena flowmeter dapat
menjadi tidak berfungsiatau akurasinya menyimpang terlalu jauh karena itu ada flowmeters
turbin
memiliki kelengkapan grease untuk digunakan pada cairan yg tidak mempunyai sifat pelumasan. 

Selain itu, turbin flowmeters yang dirancang untuk tujuan tertentu, misalnya
untuk layanan gas alam, sering dapat beroperasi pada rentang temperatur yang
terbatas (misalnya sampai 60 º C) dimana operasi pada suhu yang lebih tinggi
dapat merusak flowmeter tersebut.
Turbine
Flowmeter
ini lebih baik jika diterapkan untuk cairan sanitasi, relatif bersih,
dan korosif dalam ukuran sampai dengan sekitar 24 inci. Flowmeters turbin yang  kecil dapat dipasang langsung di pipa, tapi
ukuran dan berat flowmeters turbin yang lebih besar mungkin memerlukan
instalasi pondasi yang kuat. Aplikasi Turbin Flowmeters  kurang akurat
pada tingkat kecepatan aliranyang rendah karena dapat  memperlambat putaran rotor. sementara itu untuk installasi turbine flow meter ada yang secara inline menggunakan koneksi flange ulir dan ada juga yang menggunakan metode insert bisanya dikenal dengans sebutan insertion turbine flow meter.

 Begitu juga untuk kecepatanaliran
fluida  yang terlalu tinggi dapat
meneyebabkan keausan pada bushing ataupun bearing ataupun shaft rotor karena
itu hendaknya dalam mengoperasikan flowmeters kurang lebih  sekitar 5 persen lebih tinggi dari kecepatan
aliran maksimal sebagaimana ditentukan oleh manufacture.  Dalam beberapa aplikasi, penggantian bantalan
mungkin perlu dilakukan secara rutin dan berkakibat pada tingginya maintenance
cost. Begitu juga Aplikasi pada fluida yang kotor  umumnya harus dihindari sehingga mengurangi
kemungkinan life time flowmeter dan kerusakan bantalan/bearing/shaft rotor,  karena turbin flowmeters memiliki bagian yang
bergerak yang mengalami keausan sesuai dengan waktu penggunaan.

Sedangkan untuk segi bahan material dari jenis turbine flow meter ini ini ada cukup bervariasi dari bahan carbon steel , stainless steel baik yang food grade maupun yang tidak yang banyak digunakan untuk industri makanan bahkan dari bahan non metal seperti PVC, PP, Teflon dan lainnya yang banyak digunakan untuk chemical flow meter.



Prinsip Ultrasonic Flow Meter

Ultrasonic flow meter adalah flow meter yang dalam pengukurannya berdasarkan pada velocity dari fluid baik liquid maupun gas dengan menggunakan prisip kerja dari ultrasound.
Ultrasonic flow meter (UFM) merupakan meter jenis inferensial (mengukur secara tidak langsung) yang menentukan kecepatan alir cairan (liquid flow rate) dengan mengukur waktu transit pulsa suara frekuensi tinggi (high-frequency sound pulses) yang melintasi pipa aliran. 
Ultrasonic transit time flow meter menggunakan transduser akustik (acustic transducer) yang dapat mengirim dan menerima pulsa akustik frekwensi tinggi. Transduser akustik ditempatkan pada kedua sisi pipa sedemikian hingga pulsa akustik bergerak melintasi pipa dalam arah diagonal.

Metode ultrasonic transit time flow meter didasarkan pada pengukuran selisih waktu transmisi pulsa akustik yang melintas pipa pada dua arah yang berlawanan. Sistem pengukurannya didasarkan pada kejadian dimana pulsa akustik yang melintasi pipa secara diagonal pada aliran searah membutuhkan waktu lebih cepat dibandingkan dengan pulsa akustik yang bergerak pada arah yang berlawanan dengan aliran. Perbedaan waktu antara kedua pulsa akustik tersebut sebanding dengan kecepatan alir rata-rata sepanjang lintasan pulsa akustik. dimana waktu tersebut didasrkan pada perhitungan sbb :

tA>B = L/(c + V Cos q)
Sedangkan pulsa akustik yang melintasi pipa dengan arah berlawanan dari arah aliran membutuhkan waktu:
TB>A = L/(c – V Cos q)
dimana :
   L :  panjang lintasan pulsa akustik
   c :  kecepatan suara dalam cairan ( tergantung pada jenis fluida )
   q :  sudut antara lintasan pulsa dan sumbu pipa
   V :   kecepatan rata-rata cairan dalam pipa.
Dari kedua persamaan di atas, diperoleh flow rater rata-rata fluida menjadi:
V = (L/2cosq) x (TB>A – TA>B )/( TB>A x TA>B)
Ultrasonic flow meter ada juga yang menggunakan  jumlah transduser lebih dari 1 pasang, hal ini biasanya digunakan untuk mendapatkan jumlah lintasan yang banyak sehingga diperoleh lebih banyak informasi mengenai distribusi kecepatan aliran fluida pada pipa (flow profile) dengan tujuan meningkatkan akurasi ultrasonic flow meter.
Pengukuran flow rate dengan menggunakan metoda ultrasonic flow meter melibatkan beberapa bagian peralatan sesuai dengan fungsi dan tujuan seperti alat pengirim (transmitter) dan penerima (receiver) untuk frekuensi akustik. Pada elemen pengirim, transducer berfungsi mengubah tegangan listrik frekuensi tinggi menjadi getaran kristal (akustik).  Sedangakan pada elemen penerima, transducer mengubah getaran kristal (akustik) menjadi sinyal listrik. 
Berdasarkan metode installasi Ultrasonic Flow Meter dapat digolongkan ke dalam dua jenis yaitu :
  1.  Clamped-on  dimana  instalasinya ditempatkan di luar pipa
  2.  Inline  dimana Instalasinya ditempatkan bersatu dengan pipa menggunakan flanges
  3.  Insertion dimana metode ini hampir sama dengan model inline
Keunggulan dari Ultrasonic Flow Meter :
  1.  Tidak ada penghalang di lintasan aliran, sehingga tidak ada pressure drop.
  2. Tidak ada part bergerak (moving parts), sehingga tidak ada bagian parts yang aus yang menyebabkan maintenance cost rendah.
  3. Model multi sensor mempunyai ketelitian lebih tinggi 
  4. Dapat digunakan untuk mengukur flow fluida yang korosif dan slurry.
  5. Tersedia Model portable yang cocok untuk di bawah kemana mana untuk analisa dan diagnosa di lapangan.
  6. Untuk model clamp on jika diaplikasikan pada ukuran pipa yang besar diatas 10 inchi akan lebih ekonomis dibandingkan dengan jenis flowmeter lainnya.
Kelemahan :
  1. Biaya pengadaan awal : tinggi
  2. Model single path (one-beam) tidak sesuai untuk pengukuran kecepatan aliran (flow velocity) yang bervariasi di atas range Reynolds numbers.
  3. Untuk pengukuran pada ukuran kecil harganya sangat tinggi.